
The Linux Sysadmins Guide to Virtual Disks i

The Linux Sysadmins Guide to Virtual
Disks

From the basics to the advanced

Copyright © 2009-2016 Tim Bielawa

The Linux Sysadmins Guide to Virtual Disks by Tim Bielawa is licensed under the Creative
Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-sa/3.0/deed.en_US.

http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

The Linux Sysadmins Guide to Virtual Disks iii

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Typographical Conventions . 2

1.3 Units & Prefixes . 3

1.4 Getting Help/Feedback . 3

2 The Virtual Disk Cookbook 7

2.1 Creating Simple Images . 7

2.2 Resizing Disk Images . 8

2.2.1 Resizing RAW Images . 8

2.2.2 Resizing QCOW2 Images . 19

2.3 Query an Image for Information . 23

2.4 Converting Between RAW and QCOW2 . 25

2.4.1 Convert an Image from RAW to QCOW2 25

2.4.2 Convert an Image from QCOW2 to RAW 25

2.5 Creating Disks with Backing Images . 26

2.6 Comitting changes to a backing image . 28

2.7 Cloning a Physical Disk . 29

3 Disk Concepts 31

3.1 Creating a 1GiB virtual disk from scratch . 33

3.1.1 Background on the dd command 33

3.1.2 Running dd . 34

3.1.3 Examining the Created File . 34

3.1.4 Create a Partition Table . 36

3.2 Devices and Partitions . 37

3.2.1 Introduction . 37

3.2.2 Creating a Loop Device . 38

3.2.3 Examine the loop device . 39

3.2.4 Creating partitions . 40

3.2.5 Formatting Partitions . 41

3.2.6 Cleaning Up . 44

4 Helper Utilities 45

4.1 libguestfs . 46

4.1.1 guestmount . 46

4.1.2 virt-filesystems . 46

4.1.3 virt-rescue . 47

4.1.4 virt-resize . 47

4.1.5 virt-sparsify . 47

4.2 virt manager . 50

5 Disk Formats 51

5.1 RAW . 51

5.2 QCOW . 51

5.3 QCOW2 . 52

5.4 Other Formats . 52

The Linux Sysadmins Guide to Virtual Disks v

6 Performance Considerations 54

6.1 I/O Caching . 55

6.1.1 Write-back Caching . 56

6.1.2 Write-through Caching . 57

6.2 I/O Schedulers . 57

6.2.1 Additional Resources . 58

7 Troubleshooting/FAQs 59

8 Glossary 61

A Appendix: Man Pages 66

A.1 UNITS . 66

B Appendix: Disk Drive History 68

B.1 Disk Drive Components . 68

B.2 Access Modes . 70

B.2.1 CHS Addressing . 70

B.2.2 LBA Addressing . 71

B.3 The Master Boot Record . 72

Colophon 75

The Linux Sysadmins Guide to Virtual Disks 1 / 75

Chapter 1

Introduction

1.1 Introduction

I wasmotivated towrite this bookbecause I felt thequality of the information regarding com-
monlyused functionality in virtual diskoperationwas lackingcertain specific clear examples.
The information that is available is not contained in a central location. Some concepts of the
qemu system aren’t covered at all. FAQs lead on to having an answer to a particular query,
butmany leadyou tooffsite resources, someofwhichareno longer availableon the Internet.

What I hope to provide is a book which will demonstrate the core concepts of virtual disk
management. This book will concern itself primarily with the qemu-img tool and common
GNU/Linux disk utility tools like fdisk, parted, and resize2fs. Most importantly tome, in the
case of non-trivial examples, I hope to identify what the relevant technical concepts are and
how they work up to the final result of each example.

Other material related to this book:

• GitHub: Virtual Disk Guide¹ - report issueswith this book, or view the latest DocBook 5 XML
source under git version control

• Virtual-Disk-Book.html² - the HTML compiled version of this book

This documentwas generated from commitecbefd4 onMon 08 Feb 2016 07:42:59 PMUTC.

¹ http://github.com/tbielawa/Virtual-Disk-Guide
² http://lnx.cx/docs/vdg/output/Virtual-Disk-Operations.html

http://github.com/tbielawa/Virtual-Disk-Guide
http://lnx.cx/docs/vdg/output/Virtual-Disk-Operations.html
https://github.com/tbielawa/Virtual-Disk-Guide/commit/ecbefd4
http://github.com/tbielawa/Virtual-Disk-Guide
http://lnx.cx/docs/vdg/output/Virtual-Disk-Operations.html

1.2 Typographical Conventions

The following describes the typographical conventions used throughout this book.

References
References to other sections will look like this: Chapter 7, Troubleshooting/FAQs [59].
The format is: Chapter/section title followed by the page number in [brackets].

Footnotes
References to footnotes³ appear as small superscripted numbers flowing inline with
the current discussion.

Terminology & Emphasis
The introductionof aneworalternative term, aswell asphraseswhichhavebeengiven
emphasis, are formatted in italics:

• The disk image has been sparsified

• You should alwayswear clean socks

Commands & Options
Thenameof commandsare formatted inbold, anoption youwouldgive toa command
is formatted in amonospaced sequence, for example: give the -ltrsh options to the
ls command.

Filesystem Paths
Names or paths to files, directories, and devices on the filesystem are formatted in a
monospaced sequence: /dev/loop0p1

Examples
Examples are formatted in a gray boxwith a title barwhich provides the example num-
ber and title.

Example 1.1 An example of examples

[~/vdg] 18:38:17 (master)
$ cat /etc/redhat-release
Fedora release 19 (Schrödinger’s Cat)

³ Hello! I am a footnote.

The Linux Sysadmins Guide to Virtual Disks 3 / 75

Notes, Warnings, and Other Important Information

Note
Anotewill provideadditional information relevant to thecurrentdiscussion.

Important
Warnings and other important information which you should know before
executing any commands will appear in an admonition such as this.

1.3 Units & Prefixes

Throughout this book you will see file sizes specified with an assortment of units. For exam-
ple: 42 kB, 42 Mb, 42 GiB, 42 G, 42 GiB.

Without an explanation thismay seem confusing, random, and inconsistent. However, there
is a method to this madness:

1. Theunit used in discussionpreceding/following an example is consistentwith the con-
vention used in the example

2. Without any scope or context, binary prefixes are used (e.g., 1024 KiB, 35565 MiB)

For additional literature on why this necessary, I refer you to Appendix A, Appendix: Man
Pages [66]

1.4 Getting Help/Feedback

If you find a typographical or any other error in this book, or if you have thought of a way
to make this book better, I would love to hear from you! Please submit a report in GitHub:
https://github.com/tbielawa/Virtual-Disk-Guide/issues

https://github.com/tbielawa/Virtual-Disk-Guide/issues

If you have a suggestion for improving the book, try to be as specific as possible when de-
scribing it. If you have found an error, please include the section number and some of the
surrounding text so I can find it easily. I also recommend you review the suggestions in Chap-
ter 7, Troubleshooting/FAQs [59].

If you’re submitting an error with an example, please try and include as much relevant in-
formation about your setup as possible. This includes (but is not limited to): your operating
systemand version, the version of the software the example happenswith, if you are running
the command as the root user or not, and the exact commands to run to reproduce the error.

The Linux Sysadmins Guide to Virtual Disks 5 / 75

Acknowledgments

This book wouldn’t have been possible without the gracious advice, support, and patience
of several individuals.

Andrew “Hoss” Butcher. You’re a badass friend. A+ roommate as well, would live with again.

Thanks to John Eckersberg and Chris Venghaus for copious amounts of feedback early on.
It really helped to stoke my fire and get things moving. And a special thanks to Chris for
beingmy biggest word-of-mouth referral. I have no idea how youmeet all these people with
burning needs to have their virtual disk questions answered, but I’m glad you refer them to
me when you do.

Jorge Fábregas, you were a fabulous unexpected resource when most of the major writing
was happening for this book. Thanks for repeatedly reaching out to me with your feedback
and suggestions and pointing out errors. This book is better because of your unique contri-
butions.

ThankyouJonConnell andHenryGraham for editing! JasonHibbets andChristopherNegus,
thanks for the reviews, and general authoring and publishing advice.

Obligatory shout-outs to NormanWalsh, theman I consider the living personification of Doc-
Book XML ⁴ , and Bob Stayton, author of DocBook XSL: The Complete Guide ⁵ .

To my wife, Alicia, thanks for making me so happy and keeping me sane. Thank you for en-
couragingme to work on this book when I didn’t want to. And, thank you for everything else.

Finally, my biggest “thanks” goes to David Krovich. A mentor, friend, and button-pusher for
many years now. You always encouragedme to be better than I was. Without the opportuni-
ties you offeredme, and the radical influence you had onmy life, this bookwould never have

⁴ DocBook Homepage: http://www.docbook.org/
⁵ ReadDocBookXSL: TheCompleteGuideonline athttp://www.sagehill.net/docbookxsl/index.

html

http://www.docbook.org/
http://www.sagehill.net/docbookxsl/index.html
http://www.sagehill.net/docbookxsl/index.html

even reached conception. Truth be told, Chapter 2, The Virtual Disk Cookbook [7] section
is mostly a merge and refresh of a lot of the notes I took, and staff documentation I wrote,
working on one of our provisioning projects.

It was while working under your instruction that I discovered my passion for documenting
everything I learned. This book is a testament to that passion. Thanks, Kro.

The Linux Sysadmins Guide to Virtual Disks 7 / 75

Chapter 2

The Virtual Disk Cookbook

In this section we’re just going to cover things you’ll find yourself needing to do from time to
time. It’s assumed that you’re comfortable with the concepts already and don’t need every-
thing explained. Theory and concepts will be covered later on in Chapter 3, Disk Concepts
[31].

2.1 Creating Simple Images

The simplest operation you can do (next to deleting an image) is creating a new virtual disk
image. Depending on what format you choose there are several options available when cre-
ating an image:

• Encryption

• Compression

• Backing images ¹

• Snapshots

¹ Creating Disks with Backing Images: Section 2.5, “Creating Disks with Backing Images” [26]

In this example we will start simple and only show how to create basic images in different
formats. Each image we create will appear to a virtual machine as a drive with 10GB of ca-
pacity.

Example 2.1 Using qemu-img to Create RAW Images

$ qemu-img create webserver.raw 10G
Formatting ’webserver.raw’, fmt=raw, size=10485760 kB

From the fmt attribute in the output above we can see that the format of the virtual disk we
created is of type RAW², this is the default when using qemu-img. Where it says size=...
we see that the disk was created with a capacity of 10485760 kB, or 10gB.

2.2 Resizing Disk Images

In this section we’ll resize two different virtual disk images. The first will be a RAW image,
the other will be a QCOW2 image. The RAW section ismore involved in that we’ll do all of the
resizing operations outside of a virtualmachine. In the QCOW2 section I’ll show the (simpler)
steps which take place both outside and inside of a virtual machine.

2.2.1 Resizing RAW Images

In this part we’ll add 2GiB to a disk image I created of a 1GiB USB thumb drive ³ The thumb
drive has two roughly equal sized partitions, both are EXT4.
At the end of this section we’ll have done the following:

• Enlarged the disk by 2GiB with qemu-img

• Shifted the the second partition 1024MiB right into the new space with gparted

• Enlarged the first partition by about 1GiB with gparted

• Resized the first filesystem to use the new space on its partition with resize2fs

² Section 5.1, “RAW” [51]
³ See Section 2.7, “Cloning a Physical Disk” [29] for instructions on how to do this yourself.

The Linux Sysadmins Guide to Virtual Disks 9 / 75

Example 2.2 Resize a RAW Image

qemu-img info thumb_drive_resize.raw
image: thumb_drive_resize.raw
file format: raw
virtual size: 966M (1012924416 bytes)
disk size: 914M

qemu-img resize thumb_drive_resize.raw +2G
Image resized.

qemu-img info thumb_drive_resize.raw
image: thumb_drive_resize.raw
file format: raw
virtual size: 2.9G (3160408064 bytes)
disk size: 914M

Next we need to create device maps and devices linking to the enlarged disk image so we
may interact with it. We will use the kpartx command ⁴ to automatically create loop devices
⁵ ⁶ and devicemaps to the partitions. The-a optionmeanswe’re adding partitionmappings
and the -v option means to do it with increased verbosity so we know the names of the
created devices.

Example 2.3 Create devices with kpartx
kpartx -av ./thumb_drive_resize.raw
add map loop0p1 (253:8): 0 3082432 linear /dev/loop0 2048
add map loop0p2 (253:9): 0 996030 linear /dev/loop0 3084480

dmsetup ls | grep loop
loop0p2 (253:9)
loop0p1 (253:8)

Now we’re going to use gparted to resize the partitions in the disk image. There are two
important things to keep in mind:

⁴ For more information on the kpartx command, see Chapter 4, Helper Utilities [45]
⁵ Don’t confuse the often misused term loopback device with a loop device. In networking a loopback device

refers to a virtual interface used for routing within a host. localhost is the standard hostname given to the loop-
back address 127.0.0.1. See rfc1700 Assigned Numbers for additional information (http://tools.ietf.
org/html/rfc1700).

⁶ We’ll revisit loop devices in Chapter 3, Disk Concepts [31]

http://tools.ietf.org/html/rfc1700
http://tools.ietf.org/html/rfc1700

1. gparted expects to find the loop0p* devices in /dev/, not in /dev/mapper/

2. gpartedwon’t list loop devices in its device selection menu

When we ran kpartx it created symbolic links to the new devices (/dev/dm-*) which map
to the partitions on /dev/loop0. We can use this information to create the symlinks nec-
essary for gparted to locate loop0p*.

Example 2.4 Create the symbolic links

ls -l /dev/mapper/loop0p*
lrwxrwxrwx 1 root root 7 Jan 21 15:07 /dev/mapper/loop0p1 -> ../dm ←↩

-8
lrwxrwxrwx 1 root root 7 Jan 21 15:07 /dev/mapper/loop0p2 -> ../dm ←↩

-9

ln -s /dev/dm-8 /dev/loop0p1
ln -s /dev/dm-9 /dev/loop0p2

ls -l /dev/loop0p[12]
lrwxrwxrwx 1 root root 9 Jan 21 15:23 /dev/loop0p1 -> /dev/dm-8
lrwxrwxrwx 1 root root 9 Jan 21 15:23 /dev/loop0p2 -> /dev/dm-9

Once thesymlinksarecreatedwecan rungparted fromthecommand linewith/dev/loop0
as the device argument.

Example 2.5 Run gparted
gparted /dev/loop0
======================
libparted : 3.0
======================

Now gparted should open and show the two existing partitions, as well as the 2GiB of unal-
located space we just added to the image:

The Linux Sysadmins Guide to Virtual Disks 11 / 75

Figure 2.1: Welcome to gparted

Right click the second partition, loop0p2, and select the Resize/Move option:

Figure 2.2: Resize/Move loop0p2

We’re not going to resize the second partition. We just want to make room for the first parti-
tion to expand into. Enter 1024 into the Free space preceding (MiB) box. That will move this
partition to the right far enough to leave the first partition enough room to expand to 1024
MiB. Also, in the Align to drop-downmenu select Cylinder ⁷ :

Figure 2.3: Moving loop0p2

gpartedwill now show 1 operation pending:

⁷ On aligning Partitions: Section B.3, “The Master Boot Record” [72]

The Linux Sysadmins Guide to Virtual Disks 13 / 75

Figure 2.4: Pending move operation

Now right click the first partitionand selectResize/Move likewedidwith the secondpartition.
We’ll make the first partition use the free space preceding the second partition by setting
the Free space following (MiB) input box to 0. Again, in the Align to drop-down menu select
Cylinder:

Figure 2.5: Resize loop0p1

There is a summary of the two pending actions below the partition table. Click the green
check mark button to apply the changes:

Figure 2.6: Apply the changes

The Linux Sysadmins Guide to Virtual Disks 15 / 75

After you click apply you’ll get this confirmation dialog:

Figure 2.7: Scary warning!

Once you click apply again this windowwill show the progress:

Figure 2.8: Progress happening

You should see this screen if there were no errors:

Figure 2.9: No errors!

All done! Click Close to return to the main gparted screen:

The Linux Sysadmins Guide to Virtual Disks 17 / 75

Figure 2.10: gparted has resized our partitions

But wait, what’s this on the last screen here? gparted says loop0p1 is using 1.02GiB of
1.47GiB. That can’t be right. Before resizing the partition gparted said loop0p1 was only
using 25.54MiB out of 482.56MiB. Let’s take a look at it on the command line:

Example 2.6 Compare gparted and df output
mount /dev/loop0p1 /mnt/vdg01

df -h /mnt/vdg01
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/loop0p1 468M 11M 433M 3% /mnt/vdg01

du -sh /mnt/vdg01
14K /mnt/vdg01

umount -l /mnt/vdg01

All of that is incorrect too, as if nothingwedid ingpartedhadaneffect. What’s goingonhere?

After the partitions were resized the partition table was updated with the new information
but we never updated the device maps in the kernel. The kpartx command also accepts a -
u option to update partitions mappings. Let’s try that and see if it fixes our problem:

Example 2.7 Create device maps with kpartx
kpartx -uv /dev/loop0
add map loop0p1 (253:8): 0 3082432 linear /dev/loop0 2048
add map loop0p2 (253:9): 0 996030 linear /dev/loop0 3084480

The partition sizes and offsets reflect the changes wemade, but mounting the first partition
still doesn’t show the added capacity:

Example 2.8 Still missing added capacity

mount /dev/loop0p1 /mnt/vdg01

df -h /mnt/vdg01
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/loop0p1 468M 11M 433M 3% /mnt/vdg01

We’ve already resized the partition, but we haven’t resized the filesystem on the partition.
That’s the last thing we have to do to finish this whole resizing operation. We’ll use the re-
size2fs command and let it automatically resize the filesystem to fill the available space on
the /dev/loop0p1 partition.

Example 2.9 Resize the filesystemwith resize2fs
resize2fs /dev/loop0p1
resize2fs 1.42.3 (14-May-2012)
Resizing the filesystem on /dev/loop0p1 to 1541216 (1k) blocks.
The filesystem on /dev/loop0p1 is now 1541216 blocks long.

mount /dev/loop0p1 /mnt/vdg01

df -h /mnt/vdg01
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/loop0p1 1.5G 11M 1.4G 1% /mnt/vdg01

Don’t forget to clean up those lingering symlinks wemade earlier:

Example 2.10 Cleanup lingering symlinks

rm -f /dev/loop0p[12]

The Linux Sysadmins Guide to Virtual Disks 19 / 75

Note
The resize2fs command can also shrink partitions, print the minimum possible
size, and a couple other things. Checkman 8 resize2fs for more information.

2.2.2 Resizing QCOW2 Images

In this section we’ll resize a QCOW2 image, making it 5GB larger. This process will differ from
the RAW image resizing section in that we’ll do some operations outside of the virtual ma-
chine and some operations inside of the virtual machine.

The virtual machine we’ll be working with is called f18, which is running Fedora Linux
and has no LVM managed partitions. The disk image for this virtual machine is located at
/var/lib/libvirt/images/f18.qcow2, and the root partition is vda3.
Outside of the virtual machine the disk looks like this:

Example 2.11 Examine f18.qcow2 on the host

qemu-img info f18.qcow2
image: f18.qcow2
file format: qcow2
virtual size: 12G (12884901888 bytes)
disk size: 4.7G
cluster_size: 65536

Inside of the virtual machine the disk and root partition look like this:

Example 2.12 Examine vda in the guest

parted /dev/vda print
Model: Virtio Block Device (virtblk)
Disk /dev/vda: 12.9GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
1 1049kB 525MB 524MB primary ext4 boot
2 525MB 4686MB 4161MB primary linux-swap(v1)
3 4686MB 12.9GB 8199MB primary ext4

df -h /
Filesystem Size Used Avail Use% Mounted on
/dev/vda3 7.6G 3.8G 3.4G 53% /

Warning
Before we begin: make sure you shutdown any virtualmachines the diskmight be
attached to! For example: virsh shutdown f18

Once the virtual machine is shutdown the process for resizing QCOW2 images starts similar
to the process for resizing RAW images. Use theqemu-img resize sub-command, specify the
disk to operate on (f18.qcow2), and howmuch to increase the size by (+5G):

Example 2.13 Resize a QCOW2 Image
qemu-img resize f18.qcow2 +5G
Image resized.

qemu-img info f18.qcow2
image: f18.qcow2
file format: qcow2
virtual size: 17G (18253611008 bytes)
disk size: 4.7G
cluster_size: 65536

Once you’ve resized the disk image you can turn the virtual machine back on, for example:
virsh start f18

Important
The following steps happen inside of the running virtual machine.

The Linux Sysadmins Guide to Virtual Disks 21 / 75

Once themachine is backonlinewe can resize thepartitionwith the fdisk command. Techni-
cal note here: whenwe “resize” the partitionwith fdiskwhatwe’re actually doing is deleting
the partition and then re-creating it starting at the same position ⁸ .

Example 2.14 Resize /dev/vdawith parted
fdisk /dev/vda
Command (m for help): p

Disk /dev/vda: 18.3 GB, 18253611008 bytes, 35651584 sectors
Units = cylinders of 1008 * 512 = 516096 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00020891

Device Boot Start End Blocks Id System
/dev/vda1 * 3 1018 512000 83 Linux
/dev/vda2 1018 9080 4063232 82 Linux swap ←↩

/ Solaris
/dev/vda3 9080 24967 8006656 83 Linux

Command (m for help): d
Partition number (1-4): 3
Partition 3 is deleted

Command (m for help): n
Partition type:

p primary (2 primary, 0 extended, 2 free)
e extended

Select (default p): p
Partition number (1-4, default 3): 3
First cylinder (9080-35368, default 9080):
Using default value 9080
Last cylinder, +cylinders or +size{K,M,G} (9080-35368, default ←↩

35368):
Using default value 35368
Partition 3 of type Linux and of size 12.7 GiB is set

Command (m for help): w
The partition table has been altered!

⁸ While performing research for this section, I found some examples where the parted resize sub-command
was used. As of parted version 2.4 the resize subcommand no longer exists.

Calling ioctl() to re-read partition table.

WARNING: Re-reading the partition table failed with error 16: ←↩
Device or resource busy.

The kernel still uses the old table. The new table will be used at
the next reboot or after you run partprobe(8) or kpartx(8)
Syncing disks.

Note
In the above example we use the defaults for some of the new partition creation
prompts. The defaults work out to selecting the first and last available cylinders,
respectively.

Restart the virtualmachine again. Nowwe can see the partition size has increased from 7.6G
to 13.6GB:

Example 2.15 New capacity now detected

parted /dev/vda print
Model: Virtio Block Device (virtblk)
Disk /dev/vda: 18.3GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
1 1049kB 525MB 524MB primary ext4 boot
2 525MB 4686MB 4161MB primary linux-swap(v1)
3 4686MB 18.3GB 13.6GB primary ext4

Just like when we resized the filesystem on the RAW disk image we’ll use the resize2fs com-
mand inside the QCOW2 image. The root partition, /dev/vda3, is the last partition on the
disk and is followed by free space which we’ll grow it into:

The Linux Sysadmins Guide to Virtual Disks 23 / 75

Example 2.16 Grow the filesystem on /dev/vda3
resize2fs /dev/vda3
resize2fs 1.42.5 (29-Jul-2012)
Filesystem at /dev/vda3 is mounted on /; on-line resizing required
old_desc_blocks = 1, new_desc_blocks = 1
The filesystem on /dev/vda3 is now 3312304 blocks long.

df -h /
Filesystem Size Used Avail Use% Mounted on
/dev/vda3 13G 3.6G 8.3G 31% /

2.3 Query an Image for Information

This section is going to show how to query some basic information from a virtual disk. The
tools of the trade here are going to be ls to check disk usage, file for a quick check of the
types, and qemu-img for more in-depth information. ⁹

Example 2.17 Querying an Image

$ ls -lhs
total 136K
136K -rw-r-----. 1 tim tim 256K May 8 18:00 image-qcow.qcow2

0 -rw-r-----. 1 tim tim 10G May 8 18:00 image-raw.raw

$ file image-qcow.qcow2 image-raw.raw
image-qcow.qcow2: Qemu Image, Format: Qcow , Version: 2
image-raw.raw: data

$ qemu-img info image-qcow.qcow2
image: image-qcow.qcow2
file format: qcow2
virtual size: 10G (10737418240 bytes)
disk size: 136K
cluster_size: 65536

⁹ Theqemu-img commandmanipulates virtualmachinedisks and ispart of theQEMUsuite. “QEMU” is a “Quick
EMUlator”. It emulates hardware for virtual machines.

$ qemu-img info image-raw.raw
image: image-raw.raw
file format: raw
virtual size: 10G (10737418240 bytes)
disk size: 0

Note
These images are freshly created and don’t have any information on them yet.
Both were created to be 10G images.

The interesting information we can get from using ls -lhs is how the files are actually sized.
What’s good about these RAW disks is that you don’t need any special kind of tools to know
how large the disk is internally. image-raw.raw appears to be 10G but doesn’t have any
actual blocks allocated to it yet. It is literally an empty file. The RAW image should always
match it’s reported file size on the host OS.

Our QCOW, on the other hand, is being deceptive and concealing it’s true size. QCOWs will
grow to their maximum size over time. What makes it different from our RAW image in this
case is that it already has blocks allocated to it (that information is in the left-most column
and comes from the -s flag to ls). The allocated space is overhead from themeta-data asso-
ciated with the QCOW image format.

The file command tells us immediatelywhat it thinks each file is. This is another querywhich
is simple to perform andwe can run on any systemwithout special tools. In the last example
we see it correctly reports image-qcow.qcow2’s type. Unfortunately, without any con-
tent, all it can tell us about image-raw.raw is that it’s data.

Note
Its worthmentioning that RAW image types will be reported by file as x86 boot
sector, code offset 0xb8 once given a filesystem label and a partition
table.

Using the qemu-img commandwe can getmore detailed information about the disk images
in a clearly presented format.

The Linux Sysadmins Guide to Virtual Disks 25 / 75

Withqemu-img it’s clear thatimage-qcow.qcow2 is aQCOW2type imageand isonly 136K
on disk and internally (the virtual size field) is a 10G disk image. If the QCOW had a backing
image the path to that file would be shown here as an additional field.

For the RAW image there is no new information here that we didn’t already get from the ls
command.

2.4 Converting Between RAW and QCOW2

2.4.1 Convert an Image from RAW to QCOW2

RAW images, though simple to work with, carry the disadvantage of increased disk usage on
the host OS. One option we have is to convert the image into the QCOW2 format which uses
zlib¹⁰ compression and optionally allows your disks to be secured with 128 bit AES encryp-
tion¹¹.

Example 2.18 RAW to QCOW2

$ qemu-img convert -O qcow2 original-image.raw image-converted.qcow

$ qemu-img info image-converted.qcow
image: image-converted.qcow
file format: qcow2
virtual size: 10G (10737418240 bytes)
disk size: 140K
cluster_size: 65536

2.4.2 Convert an Image fromQCOW2 to RAW

Here’s how to do the last example, but in reverse.

¹⁰ From the zlib homepage (http://zlib.net/): zlib is designed to be a free, general-purpose, legally un-
encumbered— that is, not covered by any patents— lossless data-compression library for use on virtually any com-
puter hardware and operating system.

¹¹ Formore information on AES encryption, see FIPS PUB 197: Advanced Encryption Standard - http://csrc.
nist.gov/publications/fips/fips197/fips-197.pdf

http://zlib.net/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Example 2.19 QCOW2 to RAW
$ qemu-img convert -O raw image-converted.qcow image-converted-from ←↩

-qcow2.raw

$ qemu-img info image-converted-from-qcow2.raw
image: image-converted-from-qcow2.raw
file format: raw
virtual size: 10G (10737418240 bytes)
disk size: 0

Note
When converted to the RAW format the image has the potential to take up much
more disk space than before. RAW images may use up up their allocated space
immediately, whereas QCOW images will grow to their pre-determinedmaximum
size over time.

2.5 Creating Disks with Backing Images

A few years ago I found out about backing images (or “base-images”)¹³. Back then I was do-
ing lots of development on host provisioning tools and needed to be able to quickly revert
machines I wasworking on to a desired initial state. In this use case backing imageswere es-
pecially handy when working on features that frequently destroyed the machine if it didn’t
work right.

Snapshots were an option, but how they worked wasn’t documented very well at the time. I
went with backing images instead, as they worked perfectly for what I needed them to do. I
could work iteratively and commit changes in the COW image ¹² (copy-on-write) back to the
base-image ¹³ when I was satisfied. I also could use the same base-image for multiple COWs
at once. Thismeant that other people onmy teamworking on the same project could all use
the same base-image.

¹² In this sectionwhenwe refer toaCOW image it is not apropos theCOW(copy-on-write) disk format. SayingCOW
only serves to helpmake a distinction between the read-only base-image and the image that changes are copied to
on writing.

¹³ The terms “base-image” and “backing image” are used interchangeably

The Linux Sysadmins Guide to Virtual Disks 27 / 75

Example 2.20 Creating a Disk with a Backing Image
$ mkdir base-images
$ mkdir webserver01
$ cd base-images

$ qemu-img create -f qcow2 image-webserver-base.qcow2 10G
Formatting ’image-webserver-base.qcow2’, fmt=qcow2 size=10737418240 ←↩

encryption=off cluster_size=0
$ cd ../webserver01

$ qemu-img create -b /srv/images/base-images/image-webserver-base. ←↩
qcow2 -f qcow2 image-webserver-devel.qcow2

Formatting ’image-webserver-devel.qcow2’, fmt=qcow2 size ←↩
=10737418240 backing_file=’/srv/images/base-images/image- ←↩
webserver-base.qcow2’ encryption=off cluster_size=0

$ qemu-img info image-webserver-devel.qcow2
image: image-webserver-devel.qcow2
file format: qcow2
virtual size: 10G (10737418240 bytes)
disk size: 136K
cluster_size: 65536
backing file: /srv/images/base-images/image-webserver-base.qcow2 (←↩

actual path: /srv/images/base-images/image-webserver-base.qcow2 ←↩
)

STEPS IN DETAIL

1. I consider it bad practice to a bunch of bunch of disk images in a directory so wemade
two directories here. /srv/images/base-images/ to hold all the base-images
on this system and /srv/images/webserver01 to later hold the disk assigned to
the virtual machine.

2. Nextwe go into the base images directory and create a small 10G image, type: QCOW2.

3. Normallywhatweused to do at this point is create a virtualmachine that uses this disk
for it’s primary drive. It would get a baseOS provisioned on it and any other tweakswe
needed there each time it was wiped.

4. Once themachine was what wewanted in a “Golden Master” it was shutdown and the
backing image would bemade read-only.

5. The next step was creating the copy-on-write (COW) image. See how in the example
we give the -b option with the full path to the base-image¹⁴? Also note that no size is
given after the file name. Size is implicitly the size of the disks backing image.

6. With the image preparation complete we would modify the virtual machines configu-
ration and set its primary disk drive to the COW in the webserver01 directory.

2.6 Comitting changes to a backing image

Sometimes we would want to update a base-image to resemble the contents of an attached
COW image. Maybewewanted tomake the latest systemupdates apart of the base image, or
a configuration setting needed to be updated. This was as simple asmaking the base-image
read-write, and running qemu-img commit on the created file.

Important
Youshould turnoffor suspend thevirtualmachinewhen running thecommit com-
mand. Failure to do so could result in data corruption.

Example 2.21 Commiting changes

qemu-img create -f qcow2 /srv/base-images/base-image01.qcow2 10G
Formatting ’/srv/base-images/base-image01.qcow2’, fmt=qcow2 size ←↩

=10737418240 encryption=off cluster_size=65536

qemu-img create -b /srv/base-images/base-image01.qcow2 -f qcow2 / ←↩
srv/images/with-backing-image.qcow2

Formatting ’/srv/images/with-backing-image.qcow2’, fmt=qcow2 size ←↩
=10737418240 backing_file=’/srv/base-images/base-image01.qcow2’ ←↩
encryption=off cluster_size=65536

qemu-img commit /srv/images/with-backing-image.qcow2
Image committed.

¹⁴ Some versions of qemu-img can not handle relative paths)

The Linux Sysadmins Guide to Virtual Disks 29 / 75

2.7 Cloning a Physical Disk

“ Everything in the UNIX system is a file. ”

— The UNIX Programming Environment - Chapter 2

I never fully grasped the “everything’s a file” concept until I tried (expecting to fail) to use
the qemu-img convert sub-command to create a virtual disk image of an actual hard drive.
This is possible in part due to the philosophy laid downbyDennis Ritchie andKenThompson
when they first created UNIX: everything’s treated as a file. The synopsis of the convert sub-
command is below.

qemu-img convert [-c] [-f fmt] [-Ooutput_fmt] [-ooptions]filename [filename2...]
output_filename

In this section we’ll look at a standard 1GB USB thumb drive and then clone it into a disk
image. Using parted, here’s what that disk looks like to the host system:

Example 2.22 Thumb Drive Properties

parted /dev/sdb print
Model: Generic Flash Disk (scsi)
Disk /dev/sdb: 1013MB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
1 31.2kB 506MB 506MB primary boot
2 506MB 1013MB 507MB primary

To convert the thumb drive we’re first going to unmount the drive, then use the qemu-img
command to perform the actual conversion. While unmounting the drive I use the -l op-
tion which means to unmount lazily, i.e., to wait until there is no activity going on before
attempting to unmount. ¹⁵

¹⁵ See also: Chapter 7, Troubleshooting/FAQs [59]

Example 2.23 Conversion Steps

umount -l /dev/sdb1
time qemu-img convert -O raw /dev/sdb ./thumb_drive.raw

real 1m8.206s
user 0m0.161s
sys 0m2.593s

The Linux Sysadmins Guide to Virtual Disks 31 / 75

Chapter 3

Disk Concepts

The best way to learn is by doing, so to learn the concepts of virtual disks we’re going to
create a 1GiB ¹ virtual disk from scratch. This information is applicable to the topic of disks
in general, it’s value is not limited to virtual disks.

What makes virtual disks any different from actual hard drives? We’ll examine this question
by creating a virtual disk from scratch.

What does your operating system think a disk drive is? I have a 320 GB SATA drive in my
computer which is represented in Linux as the file /dev/sda. Using file, stat and fdisk
we’ll see what Linux thinks the /dev/sda file is.

Let’s start out by looking at what a regular drive looks like to our operating system. Through-
out this section the regular drive we’ll be comparing our findings against will be a 320G ²
SATA hard drive drive that Linux references as /dev/sda. The following example shows
some basic information about the device.

Example 3.1 Regular Disk Drive
$ file /dev/sda
/dev/sda: block special

¹ Check out Appendix A, Appendix: Man Pages [66] for a review of binary/decimal prefixes if “GiB” is foreign to
you.

² If you’re wondering why I didn’t say 320GiB here, it’s because “320GB” is the capacity as defined by the man-
ufacturer.

$ stat /dev/sda
File: ‘/dev/sda’
Size: 0 Blocks: 0 IO Block: 4096 block ←↩

special file
Device: 5h/5d Inode: 5217 Links: 1 Device ←↩

type: 8,0
Access: (0660/brw-rw----) Uid: (0/ root) Gid: (6/ ←↩

disk)
Access: 2010-09-15 01:09:02.060722589 -0400
Modify: 2010-09-12 11:03:20.831372852 -0400
Change: 2010-09-12 11:03:26.226369247 -0400

$ sudo fdisk -l /dev/sda
Disk /dev/sda: 320.1 GB, 320071851520 bytes
255 heads, 63 sectors/track, 38913 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x12031202

Device Boot Start End Blocks Id System
/dev/sda1 1 25496 204796588+ 7 HPFS/NTFS
/dev/sda2 25497 31870 51199155 83 Linux
/dev/sda3 31871 33086 9767520 82 Linux swap ←↩

/ Solaris
/dev/sda4 33087 38913 46805377+ 5 Extended
/dev/sda5 * 33087 38913 46805346 83 Linux

The term block is generally interchangeablewith the term sector. The only difference in their
meaning is contextual. It’s common usage to say block when referring to the data being ref-
erenced and to use sectorwhen speaking about disk geometry. Officially the term data block
wasdefinedbyANSIASCX3 inANSI X3.221-199x - ATAttachment Interface forDiskDrives (ATA-1)
³ ⁴ §3.1.3 as:

data block
This term describes a data transfer, and is typically a single sector […]

Storage units need to be clearly defined. Luckily some very smart people⁵ already took care

³ ANSI X3.221-199x Working Draft: http://www.t10.org/t13/project/d0791r4c-ATA-1.pdf
⁴ Technical Committee (T13) Homepage: http://www.t10.org/t13/
⁵ IEC 60027-2, Second edition, 2000-11, Letter symbols to be used in electrical technology - Part 2: Telecommuni-

cations and electronics: http://webstore.iec.ch/webstore/webstore.nsf/artnum/034558

http://www.t10.org/t13/project/d0791r4c-ATA-1.pdf
http://www.t10.org/t13/
http://webstore.iec.ch/webstore/webstore.nsf/artnum/034558

The Linux Sysadmins Guide to Virtual Disks 33 / 75

of that. The International Electrotechnical Commission ⁶ defined binary prefixes for use in
the fields of data processing and data transmission. Below are some prefixes as they apply
to bytes. See Appendix A, Appendix: Man Pages [66] for the full prefix listing.

Abbrev. Measurement Name
1B = 8 bits The byte
1KiB = 1B * 210 The kibibyte
1MiB = 1KiB * 210 Themebibyte
1GiB = 1MiB * 210 The gibibyte

3.1 Creating a 1GiB virtual disk from scratch

3.1.1 Background on the dd command

We’ll use the dd command to create the file that represents our virtual disk. Other higher
level tools like qemu-img exist to do similar things but using ddwill give us a deeper insight
into what’s going on. ddwill only be used in the introductory part of this document, later on
we will use the qemu-img command almost exclusively.

Ifwe’re creatinga1GiBdisk thatmeans the file needs tobeexactly 230 bytes in size. Bydefault
dd operates in block sized chunks. This means that to create 230 bytes it needs to push a
calculable number of these chunks into our target disk file. This number is referred to as the
count. To calculate the proper count setting we need only to divide the total number of
bytes required by the size of a each block. The block size is given to ddwith the bs option. It
specifies the block size in bytes. If not explicitly defined, it defaults to 512 byte blocks (29).

count = 230 / 2 9 = 1,073,741,824/512 = 2,097,152

EQUATION 3.1: Calculating the Count

We need to fill the file with something that has a negligible value. On Unix systems the best
thing to use is the output from/dev/zero (a special character device, like a keyboard). We
specify /dev/zero as our input file to dd by using the if option.

⁶ The IEEE also adopted this method for unit prefixes. Within the IEEE it is known as IEEE Std 1541-2002: http:
//ieeexplore.ieee.org/servlet/opac?punumber=5254929

http://ieeexplore.ieee.org/servlet/opac?punumber=5254929
http://ieeexplore.ieee.org/servlet/opac?punumber=5254929

Note
/dev/zero doesn’t provide endless zero characters. It actually provides endless
NUL control characters(ˆ@ in Caret Notation). The NUL control character has the
octal value 000. The actual ASCII “zero” character has the octal value 060.

NUL being a control character ⁷ means it’s a non-printing character (it doesn’t represent a
written symbol), so if youwant to identify it you can use cat like this to print 5NUL characters
in Caret Notation ⁸:

$ dd if=/dev/zero bs=1 count=5 2>/dev/null | cat -v
^@^@^@^@^@

You can also convert the output from /dev/zero into ASCII 0 characters like this:
$ if=/dev/zero bs=1 count=5 2>/dev/null | tr ”\0” ”\60”
00000

3.1.2 Running dd

With the information from the preceding sections we can now create the file that will soon
be a virtual disk. The file we createwill be calleddisk1.raw and filledwith 2097152 blocks
of NUL characters from /dev/zero. Here’s the command:

Example 3.2 Running the dd command
$ dd if=/dev/zero of=disk1.raw bs=512 count=2097152

Now that you know what /dev/zero is it’s obvious this is just a file containing 230 bytes
(1GiB) of data, each byte literally having the value 0.

3.1.3 Examining the Created File

Like in Example 3.1, “Regular Disk Drive” [31] let’s take a look at the file we created from the
operating system’s point of view.

⁷ Wikipedia.org - Control Characters: http://en.wikipedia.org/wiki/Control_code
⁸ Wikipedia.org - Caret Notation: http://en.wikipedia.org/wiki/Caret_notation

http://en.wikipedia.org/wiki/Control_code
http://en.wikipedia.org/wiki/Caret_notation

The Linux Sysadmins Guide to Virtual Disks 35 / 75

Example 3.3 Examining the Created File

$ dd if=/dev/zero of=disk1.raw bs=512 count=2097152
2097152+0 records in
2097152+0 records out
1073741824 bytes (1.1 GB) copied, 10.8062 s, 99.4 MB/s

$ file disk1.raw
disk1.raw: data

$ stat disk1.raw
File: ‘disk1.raw’
Size: 1073741824 Blocks: 2097152 IO Block: 4096 regular ←↩

file
Device: 805h/2053d Inode: 151552 Links: 1
Access: (0644/-rw-r--r--) Uid: (500/tim) Gid: (500/tim)
Access: 2010-09-15 02:51:36.147724384 -0400
Modify: 2010-09-15 02:51:25.729720057 -0400
Change: 2010-09-15 02:51:25.729720057 -0400

$ fdisk -l disk1.raw
Disk disk1.raw: 0 MB, 0 bytes
255 heads, 63 sectors/track, 0 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x00000000

Disk disk1.raw doesn’t contain a valid partition table

From this it’s quite clear that there isn’t much that disk1.raw has in common with the
actual disk drive sda. Using this information, let’s put the physical disk and the virtual disk
size-by-size andmake some observations about their properties.

• file thinks it’s “data”, which the file manual page says is how it labels what are usually
“binary” or non-printable files.

• stat says it’s just a regular file.

• fdisk doesn’t knows how big it is, nor can it find any partition information on it.

These results make perfect sense, as disk1.raw is just 230 0’s in a row.

Command sda disk1.raw
file block special data
stat block special regular file
fdisk Contains partition table Missing partition table

Table 3.1: Attribute Comparison

3.1.4 Create a Partition Table

Use GNU parted to put a valid partition table on the image file.

Example 3.4 Create a Partition Table

$ parted disk1.raw mklabel msdos
WARNING: You are not superuser. Watch out for permissions.

Let’s examine the image again to see how the operating system thinks it has changed.

Example 3.5 Overview - What Changed

$ file disk1.raw
disk1.raw: x86 boot sector, code offset 0xb8

$ stat disk1.raw
File: ‘disk1.raw’
Size: 1073741824 Blocks: 2097160 IO Block: 4096 regular ←↩

file
Device: 805h/2053d Inode: 151552 Links: 1
Access: (0644/-rw-r--r--) Uid: (500/tim) Gid: (500/tim)
Access: 2010-09-15 19:38:30.516826093 -0400
Modify: 2010-09-15 19:38:25.934611550 -0400
Change: 2010-09-15 19:38:25.934611550 -0400

$ fdisk -l disk1.raw
You must set cylinders.
You can do this from the extra functions menu.

Disk disk1.raw: 0 MB, 0 bytes
255 heads, 63 sectors/track, 0 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

The Linux Sysadmins Guide to Virtual Disks 37 / 75

Disk identifier: 0x000e44e8

Device Boot Start End Blocks Id System

• Now, instead of “data”, the file command thinks it is an “x86 boot sector”. That sounds
pretty accurate as we just put a partition table on it.

• stat still thinks it’s a regular file, as opposed to a block special device, or a socket, etc…

• fdiskwas able to find a partition table in the boot sector which file found.

Command sda disk1.raw disk1.raw (via
parted)

file block special data x86 boot sector
stat block special regular file regular file

fdisk has partition table no partition table
valid partition
table. unknown
cylinder count

Table 3.2: What parted Changed

3.2 Devices and Partitions

3.2.1 Introduction

After using parted disk1.raw has a partition table, but does that mean we can create par-
titions on it now? Let’s run fdisk on disk1.raw.
$ fdisk disk1.raw
You must set cylinders.
You can do this from the extra functions menu.

Command (m for help):

Amuch simpler way to create partitions (still using fdisk) is by accessing the file as if it were
an actual device. Doing this requires creating loop devices.

Insteadofusing fdiskondisk1.rawdirectly,we’ll createa loopdeviceandassociatedisk1.
rawwith it. From here on we’ll be accessing our virtual drives through loop devices.

Why are we doing this? And what is a loop device?

Unfortunately for disk1.raw, it will never be anythingmore than just a file. The operating
system just doesn’t have interfaces for block operations against files. As the kernel creates
the block special device /dev/sda to represent my hard drive, we need to create a block
special device to represent our virtual disk. This is called a loop device. You can think of a
loop device, e.g., /dev/loop1, like a translator.
With a loop device inserted between programs and our disk image we can view and operate
on the disk image as if it were a regular drive. When accessed through a loopdevice fdisk can
properly determine the number of cylinders, heads, and everything else required to create
partitions.

3.2.2 Creating a Loop Device

Note
Since we’ll be working with the kernel to create a device you’ll need to have super
user permissions to continue.

To create a loopdevice run the losetup commandwith the-foption. The first available loop
device will be selected automatically and associated with disk1.raw ⁹ .

Example 3.6 Creating a loop device with losetup
$ sudo losetup -f disk1.raw

$ sudo losetup -a
/dev/loop1: [0805]:151552 (/home/tim/images/disk1.raw)

You can run file, stat, and fdisk on disk1.raw to verify that nothing has changed since we
put a partition table on it with parted.

⁹FUSE (Filesystem in Userspace) has amodule calledMountlo that allows non-root users tomakemake loop
devices.

The Linux Sysadmins Guide to Virtual Disks 39 / 75

3.2.3 Examine the loop device

Example 3.7 Examining the Loop Device
$ file /dev/loop0
/dev/loop0: block special

$ stat /dev/loop0
File: ‘/dev/loop0’
Size: 0 Blocks: 0 IO Block: 4096 block ←↩

special file
Device: 5h/5d Inode: 5102 Links: 1 Device type: 7,0
Access: (0660/brw-rw----) Uid: (0/ root) Gid: (6/ ←↩

disk)
Access: 2010-09-15 01:22:09.909721760 -0400
Modify: 2010-09-12 11:03:19.351004598 -0400
Change: 2010-09-12 11:03:24.694640781 -0400

$ sudo fdisk -l /dev/loop0
Disk /dev/loop0: 1073 MB, 1073741824 bytes

255 heads, 63 sectors/track, 130 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x000e44e8

Device Boot Start End Blocks Id System

Look back at Example 3.1, “Regular Disk Drive” [31] where I ran these commands against my
actual disk drive (/dev/sda) and you’ll see the results are quite similar.

• file detects loop0 as a block special device.

• stat does too.

• fdisk no longer says we need to set the cylinders.

Our virtual disk is starting to look like a real hard drive now! To conclude this section we’ll:

• create a partition

• format it with an ext3 filesystem

• mount it for reading and writing

Command sda disk1.raw disk1.raw
(via parted) /dev/loop0

file block special data x86 boot
sector block special

stat block special regular file regular file block special

fdisk has partition
table

no partition
table

valid partition
table.
unknown
cylinder count

valid partition
table. known
cylinder count

Table 3.3: Examining the Loop Device

3.2.4 Creating partitions

Open /dev/loop0 (or whatever loop device your disk was associated with) in fdisk to cre-
ate a partition.

Example 3.8 Creating a partition with fdisk
$ sudo fdisk /dev/loop0
Command (m for help): n
Command action

e extended
p primary partition (1-4)

p
Partition number (1-4): 1
First cylinder (1-130, default 1):
Using default value 1
Last cylinder, +cylinders or +size{K,M,G} (1-130, default 130):
Using default value 130

Command (m for help): t
Selected partition 1
Hex code (type L to list codes): 83

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

The Linux Sysadmins Guide to Virtual Disks 41 / 75

WARNING: Re-reading the partition table failed with error 22: ←↩
Invalid argument.

The kernel still uses the old table. The new table will be used at
the next reboot or after you run partprobe(8) or kpartx(8)
Syncing disks.

$ sudo fdisk -l /dev/loop0
Disk /dev/loop0: 1073 MB, 1073741824 bytes
255 heads, 63 sectors/track, 130 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x000e44e8

Device Boot Start End Blocks Id System
/dev/loop0p1 1 130 1044193+ 83 Linux

3.2.5 Formatting Partitions

Unlike /dev/sdawe can’t just create a partition on the loop0 device by addressing it as /
dev/loop0. This is because the kernel has no device created to represent it. Instead we’ll
have to create another device associated with a specific offset in our device/file.

Q:What is an offset, and why do we have to specify one?

A: An offset indicates how far from the beginning of a device something is. The first parti-
tion is not located at the beginning of the device. That iswhere theMaster Boot Record (MBR)
is stored (offset=0). If we tried to create a partition atoffset=0wewould overwrite the
MBR. Knowing the offset will allow us to create a device mapped to where the first partition
begins without overwriting the MBR. Linux does this automatically for regular disks during
the boot process.

Q: How do we calculate the offset to specify?

A: To calculate the offset we need to know what sector the partition (loop0p1) starts on.
fdisk can give us this information. (Spoiler: 9 times out of 10 the offset for the first partition
will be 512 * 63 =32256).
Q: Why doesn’t the first partition begin after the MBR? Specifically, why is there empty space
between the first sector (where the MBR is stored) and the first partition?

A: It’s complicated but worth learning about. See Appendix B, Appendix: Disk Drive History
[68] for a complete explanation. Here’s the short answer: In currentPCMBRs theremaybeup

to 446B of executable code and a partition table containing up to 64B of data. When you add
in another 2B to record a Boot Signature you have 512B, which up until recently happened
to be the typical size of one sector. Partitioning tools historically left the space between the
MBR and the second cylinder empty. Modern boot loaders (NTLDR¹⁰, GRUB¹¹, etc) use this
space to store additional code and data necessary to boot the system ¹² ¹³. Some software,
such as licensing managers and virus scanners, also use this space to store files ¹⁴ .

Print the partition table using fdiskwith the -u option to switch the printing format to sec-
tors instead of cylinders for units.

$ sudo fdisk -u -l /dev/loop0
Disk /dev/loop0: 1073 MB, 1073741824 bytes
255 heads, 63 sectors/track, 130 cylinders, total 2097152 sectors
Units = sectors of 1 * 512 = 512 bytes
Disk identifier: 0x000e44e8

Device Boot Start End Blocks Id System
/dev/loop0p1 63 2088449 1044193+ 83 Linux

/dev/loop0p1 is our first partition and from the table above we know that it starts on
sector 63. Since we have to specify offsets in bytes we multiply 63 by 512 (the default block
size) to obtain an offset of 32256 bytes.

$ sudo losetup -o 32256 -f /dev/loop0

$ sudo losetup -a
/dev/loop0: [0805]:151552 (/home/tim/images/disk1.raw)
/dev/loop1: [0005]:5102 (/dev/loop0), offset 32256

Now that we have /dev/loop1 representing the first partition of our virtual disk we can
create a filesystem on it and finally mount it.

¹⁰ NT Loader (NTLDR): http://en.wikipedia.org/wiki/NTLDR
¹¹ The Grand Unified Bootloader (GRUB): http://www.gnu.org/software/grub/
¹² GRUB: BIOS Installation: http://www.gnu.org/software/grub/manual/grub.html#

BIOS-installation
¹³ Simon Kitching: Booting Linux on x86 using Grub2: http://moi.vonos.net/linux/Booting_

Linux_on_x86_with_Grub2/#installing-grub
¹⁴ Ubuntu Forums - Sector 32 FlexNet Problem -- Grub: http://ubuntuforums.org/showthread.php?

t=1661254

http://en.wikipedia.org/wiki/NTLDR
http://www.gnu.org/software/grub/
http://www.gnu.org/software/grub/manual/grub.html#BIOS-installation
http://www.gnu.org/software/grub/manual/grub.html#BIOS-installation
http://moi.vonos.net/linux/Booting_Linux_on_x86_with_Grub2/#installing-grub
http://moi.vonos.net/linux/Booting_Linux_on_x86_with_Grub2/#installing-grub
http://ubuntuforums.org/showthread.php?t=1661254
http://ubuntuforums.org/showthread.php?t=1661254

The Linux Sysadmins Guide to Virtual Disks 43 / 75

Example 3.9 Formatting andmounting the partition
$ sudo mkfs -t ext3 /dev/loop1
mke2fs 1.41.9 (22-Aug-2009)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
65536 inodes, 262136 blocks
13106 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=268435456
8 block groups
32768 blocks per group, 32768 fragments per group
8192 inodes per group
Superblock backups stored on blocks:
32768, 98304, 163840, 229376

Writing inode tables: done
Creating journal (4096 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 25 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

$ sudo losetup -d /dev/loop1

$ sudo losetup -d /dev/loop0

$ mkdir partition1

$ sudo mount -t ext3 -o loop,offset=32256 disk1.raw partition1/

$ mount | grep partition1
/dev/loop0 on /home/tim/images/partition1 type ext3 (rw,offset ←↩

=32256)

$ df -h partition1/
Filesystem Size Used Avail Use% Mounted on
/dev/loop0 1008M 18M 940M 2% /home/tim/images/ ←↩

partition1

Note
The same procedure applies to any arbitrary partition: obtain the starting sector,
multiply by block size.

3.2.6 Cleaning Up

You can detach the loop device (while leaving your file intact) by giving the -d option to los-
etup.

Example 3.10 Detaching a loop device

$ sudo losetup -d /dev/loop1

The Linux Sysadmins Guide to Virtual Disks 45 / 75

Chapter 4

Helper Utilities

Up until now most of the commands we’ve been using have been very low-level. Just the
section on resizing images ¹ is about 8 pages of this book (depending on what format you’re
reading it in). Let’s get real here: it’s not pragmatic to run ten commands when one or two
will suffice. Luckily for us some very helpful utilities exist.

This section will introduce those utilities. I’ll highlight some key features in each, show de-
mos, and tell you where you can find more information. Let’s get started by introducing our
new heros using their official descriptions.

libguestfs
libguestfs is a way to create, access and modify disk images. You can look inside
disk images, modify the files they contain, create them from scratch, resize them, and
much more. It’s especially useful from scripts and programs and from the command
line.

virt-manager
The “Virtual Machine Manager” application (virt-manager for short package name) is
a desktop user interface for managing virtual machines. It presents a summary view
of running domains, their live performance & resource utilization statistics. The de-
tailed view graphs performance & utilization over time. Wizards enable the creation
of new domains, and configuration & adjustment of a domain’s resource allocation &
virtual hardware. An embedded VNC client viewer presents a full graphical console to
the guest domain.

¹ Section 2.2, “Resizing Disk Images” [8]

4.1 libguestfs

libguestfs make managing virtual disks (and machines) a lot simpler. Included is a C
library (with bindings available for Perl, Python, Ruby, Java, OCaml, PHP, Haskell, Erlang,
Lua and C#), as well as a collection of 34 utilities (at the time of writing).

I won’t even attempt to cover all of it’s features in this book. Instead, I’ll go over some of the
most useful utilities. For more information on libguestfs you should go to the project
website ² where they have a complete 250 page manual fully describing all aspects of libg
uestfs.

4.1.1 guestmount

The guestmount program can be used tomount virtualmachine filesystems and
other disk images on the host. It uses libguestfs for access to the guest filesys-
tem, and FUSE (the ”filesystem in userspace”) tomake it appear as amountable
device.

—man 1 guestmount

foo

4.1.2 virt-filesystems

This tool allowsyou todiscover filesystems, partitions, logical volumes, and their
sizes in a disk image or virtual machine.

—man 1 virt-filesystems

virt-filesystems is the Sherlock Holmes ³ of virtual disk management. What delights me
most about virt-filesystems is how well it integrates with LVM (Logical Volume Manager) to
show you LVM device paths. This tool is most useful in combination with other tools, such as
virt-resize, virt-sparsify, or guestmount.

² libguestfs homepage: http://libguestfs.org/
³ Sherlock Holmes is a fictional detective. Read some of the books online for free on Project Gutenberg: http:

//www.gutenberg.org/ebooks/1661

http://libguestfs.org/
http://www.gutenberg.org/ebooks/1661
http://www.gutenberg.org/ebooks/1661

The Linux Sysadmins Guide to Virtual Disks 47 / 75

4.1.3 virt-rescue

virt-rescue is like a Rescue CD, but for virtualmachines, andwithout the need for
a CD. virt-rescue gives you a rescue shell and some simple recovery tools which
you can use to examine or rescue a virtual machine or disk image.

—man 1 virt-rescue

4.1.4 virt-resize

virt-resize is a tool which can resize a virtual machine disk, making it larger or
smaller overall, and resizing or deleting any partitions contained within.

—man 1 virt-resize

4.1.5 virt-sparsify

virt-sparsify is a tool which canmake a virtual machine disk (or any disk image)
sparse a.k.a. thin-provisioned. This means that free space within the disk image
can be converted back to free space on the host.

—man 1 virt-sparsify

Depending on your deployment strategy the virt-sparsify command could potentially save
youa lot of disk space. This is especially the case in “cloud”-type setupswherenewmachines
are commonly created from a single “golden-master” image. If you’re making copies of any
disk image then you need to make sure that you aren’t unnecessarily wasting space on your
disk.

That’swherevirt-sparsify comes in. When you sparsify adisk image (or any other file for that
matter) you’re potentially reducing the number of blocks on the backing storage volume ⁴
which are allocated to the disk image. This frees up room on the backing volume for storing
other files. Sparsifying a disk image is only effective as there is space that can be freed. More
on that next.

⁴ The phrase “backing storage volume” refers to the actual storage device which the disk image is saved on.

Important
Sparsifying files doesn’t divorce you from the inherent size limitations of your
backing storage volume. I.e., you can not expect to fill two 100GiB sparse disk im-
ages with data if the volume they’re stored on is only 50GiB.

In this example I’ll sparsify the disk image we cloned from a thumbdrive earlier in the book
⁵ . Let’s start by using the qemu-img info subcommand ⁶ to see how much total space the
disk image has allocated to it presently:

qemu-img info ./thumb_drive.raw
image: ./thumb_drive.raw
file format: raw
virtual size: 966M (1012924416 bytes)
disk size: 914M

The output youwant to take note of here is on thedisk size line: 914M. For a thumbdrive
that only had two small text files on it, we sure are wasting a lot of space. Let’s attempt to
reclaim that space with virt-sparsify. We’ll call virt-sparsify with two parameters, the first
is the source disk name, thumb_drive.raw, and the second is the name of the sparsified
disk image we’re going to create, thumb_drive_sparse.raw:

Example 4.1 Sparsify a disk image
virt-sparsify ./thumb_drive.raw ./thumb_drive_sparse.raw
Create overlay file to protect source disk ...
Examine source disk ...
100% [...] 00:00

Fill free space in /dev/vda1 with zero ...
100% [...] --:--

Fill free space in /dev/vda2 with zero ...
100% [...] --:--

Copy to destination and make sparse ...

Sparsify operation completed with no errors. Before deleting the ←↩
old

disk, carefully check that the target disk boots and works ←↩
correctly.

⁵ Example 2.23, “Conversion Steps” [30]
⁶ We could also use the ls -lsh command. The -s option prints the allocated size (actually used space), and the

-h options prints sizes in “human readable” formats, e.g., 915M or 4.0K

The Linux Sysadmins Guide to Virtual Disks 49 / 75

As you can see, the output from virt-sparsify is straightforward and easy to grok ⁷ . Right
awaywe can tell that virt-sparsify is protecting our source file fromundesiredmodifications
by creating an “overlay file”. Next it examines the disk, identifying entities such as partition
tables, LVM volumes, and space to be freed. Then the freeable space is zeroed out.

Remember that we haven’t modified the source image yet! All of the potential changes were
made to an overlay file. The final step to sparsify the file is combining the delta present in
the overlay file with the source file and writing the result out to disk. Observe the following
important note from the virt-sparsifyman page:

Important
virt-sparsifymay require up to 2x the virtual size of the source disk image (1 tem-
porary copy + 1 destination image). This is in theworst case and usuallymuch less
space is required.

Let’suseqemu-img infoagainandexamine thesparsifieddisk image (thumb_drive_sparse.
raw). Recall that we’re primarily concerned with the disk size field and that the starting
size was 914M:

qemu-img info ./thumb_drive_sparse.raw
image: ./thumb_drive_sparse.raw
file format: raw
virtual size: 966M (1012924416 bytes)
disk size: 6.2M

From this we can see that after the image was sparsified the allocated space is only 6.2M.
That’sanet savingsof907.8M!Don’t let this result giveyouunreasonableexpectations though.
This example demonstrated an ideal case, where the source disk was virtually 100% empty
to begin with.

virt-sparsify has other options available as well. For example, it can convert between for-
mats (e.g., vdmk to qcow2), ignore specific filesystems on the source disk, or enable com-
pression in qcow2 images. Read theman page for a complete description of all the available
options.

⁷ grok - verb - ”To understand. Connotes intimate and exhaustive knowledge”. Source: http://www.catb.
org/jargon/html/G/grok.html

http://www.catb.org/jargon/html/G/grok.html
http://www.catb.org/jargon/html/G/grok.html

4.2 virt manager

Up until now most of the commands we’ve been using have been very low-level. Just the
section on resizing images ⁸ is about 8 pages of this book (depending on what format you’re
reading it in). Let’s get real here: it’s not pragmatic to run ten commands when one or two
will suffice. Luckily for us some very helpful utilities exist.

⁸ Section 2.2, “Resizing Disk Images” [8]

The Linux Sysadmins Guide to Virtual Disks 51 / 75

Chapter 5

Disk Formats

In this chapter we’ll review some of the formats available for virtual disks. Along the way
we’ll discuss features of each format, performance options (tunables), and use case consid-
erations.

5.1 RAW

Words to introduce the feature set.

• Simple

• Exportable

• Supports sparse files

Words about performance and use-cases.

5.2 QCOW

Words to introduce the feature set. http://people.gnome.org/~markmc/qcow-image-format-
version-1.html

Words about performance and use-cases.

• Smaller file size, even on filesystems which don’t support holes (i.e. sparse files)

• Snapshot support, where the image only represents changes made to an underlying disk
image

• Optional zlib based compression

• Optional AES encryption

• Superseded by QCOW2

5.3 QCOW2

Words to introduce the feature set. http://people.gnome.org/~markmc/qcow-image-format.html

Words about performance and use-cases.

• Smaller file size, even on filesystems which don’t support holes (i.e. sparse files)

• Copy-on-write support viabacking images, where the imageonly represents changesmade
to an original separate disk image

• Snapshot support, where the image can contain multiple snapshots of the images history

• Optional zlib based compression

• Optional AES encryption

• Options for performance/data integrity tuning

5.4 Other Formats

In addition to the formats we’ve already reviewed, QEMU has varying levels of support for
several other disk image formats. See thedocumentation¹ for a complete descriptionof their
supported options.

The following formats are supported by QEMU in a read-writemode:
¹ QEMU User Docs: 3.6.6 Disk image file formats - http://qemu.weilnetz.de/qemu-doc.html#

disk_005fimages_005fformats

http://qemu.weilnetz.de/qemu-doc.html#disk_005fimages_005fformats
http://qemu.weilnetz.de/qemu-doc.html#disk_005fimages_005fformats

The Linux Sysadmins Guide to Virtual Disks 53 / 75

qed
Old QEMU image format with support for backing files and compact image files (when
your filesystem or transport medium does not support holes).

cow
User Mode Linux Copy On Write image format. It is supported only for compatibility
with previous versions.

vdi
VirtualBox 1.1 compatible image format.

vmdk
VMware 3 and 4 compatible image format.

vpc
VirtualPC compatible image format (VHD).

The following formats are also supported by QEMU in a read-onlymode:

bochs
Bochs images of growing type.

cloop
Linux Compressed Loop image, useful only to reuse directly compressed CD-ROM im-
ages present for example in the Knoppix CD-ROMs².

dmg
Apple disk image.

parallels
Parallels disk image format.

² KNOPPIX: bootable Live Linux system on CD/DVD - http://www.knopper.net/knoppix/index-en.
html

http://www.knopper.net/knoppix/index-en.html
http://www.knopper.net/knoppix/index-en.html

Chapter 6

Performance Considerations

Managing disk images doesn’t stop at file manipulation and storage pool monitoring. After
you create a disk image something else is going to use it. That’s where performance tuning
considerations come into play. This section straddles the line between system administrator
and application developer roles. What I mean to say is that application of some techniques
in this section may require knowledge which is outside of your domain as a system admin-
istrator. To help bridge the knowledge gap I’ll include notes on how to identify what you’re
looking for when tuning the system.

Many performance tuning decisions come down to one question: In the event of catastrophic
system failure, howexpensive is it to replace the data? If that value is low you can reach higher
levels of performance at the cost of higher risk of data loss. If that value is high you can reach
greater levels of data integrity at the cost of performance.

In this section we’ll cover the following topics:

• Selecting the right disk caching mode

• Selecting the right virtual device

• Selecting the right I/O scheduler

• Balancing resources with cgroups

Youmay also be interested in reading over Chapter 5, Disk Formats [51].

The Linux Sysadmins Guide to Virtual Disks 55 / 75

6.1 I/O Caching

I/O caching requirements differ from host to host. I/O caching refers to the mode (or write
policy) by which the kernel writes modified data to both the cache and the caches backing
store. There are two general modes to consider, write-back and write-through. Let’s review
them now:

Write-back
Writesaredone lazily. That is,writes initiallyhappen incache, and thenarepropagated
to the appropriate backing storage device. Also known aswrite-behind.

Write-through
Writes are done synchronously to cache and the backing store (main system memo-
ry/disk drive).

Selecting the correct cachemode can increase or decrease your overall systemperformance.
Selecting the correct mode depends on several factors, including:

• Cost of data loss

• System latency vs. throughput requirements

• Operating System support

• Hypervisor feature support

• Virtualization deployment strategy

In addition towrite-back andwrite-throughmodes there is a thirdpseudo-mode callednone.
This mode is considered a write-backmode. In this mode the onus is on the guest operating
system to handle the disk write cache correctly in order to avoid data corruption on host
crashes². In a supported systemwhere latency/throughput are valuedoverdata integrity you
should consider choosing the “none”mode¹ Next we’ll review the two cachemode options
in greater detail. At the end of the chapter we’ll summarize the use cases for eachmode.

¹ https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_
Linux/6/html/Virtualization_Tuning_and_Optimization_Guide/chap-Virtualization_
Tuning_Optimization_Guide-BlockIO.html

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Tuning_and_Optimization_Guide/chap-Virtualization_Tuning_Optimization_Guide-BlockIO.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Tuning_and_Optimization_Guide/chap-Virtualization_Tuning_Optimization_Guide-BlockIO.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Tuning_and_Optimization_Guide/chap-Virtualization_Tuning_Optimization_Guide-BlockIO.html

6.1.1 Write-back Caching

Write-back caching means that as I/O from the virtual guest happens it is reported as com-
plete as soon as the data is in the virtual hosts page cache². This is a shortcut around the I/O
process wherein the data is written into the systems cache and then subsequently written
into the backing storage volume. Whether that volume be volatile systemmemory (such as
ram), or a non volatile source (such as a disk drive). Inwrite-back caching the newdata is not
written to the backing store until a later time.

I remember the phrase write-back by thinking of it like this: “As soon as a write happens on
the guest a response is sent back to indicate that the operation has ‘completed’.”

Using write-back caching will have several side-affects:

PRO: Increased performance
Both the guest and host will experience increased I/O performance due to the lazy na-
ture of cache-writes.

CON: Increased risk of corruption
Until the data is flush’d there is an increased risk of data corruption/loss due to the
volatile properties of system cache.

CON: Doesn’t support guest migrations
You can not use the guest migration hypervisor feature if you are using write-back
cachemode.

CON: Not supported by all Operating Systems
Not all OSs may support write-back cache. For example, RHEL releases prior to 5.6³.

Though the CONs out-number the PROs, In reality, write-back is not as dangerous as it may
appear to be. The QEMU User Documentation² says the following:

By default, the cache=writebackmode is used. It will report data writes as
completed as soon as the data is present in the host page cache. This is safe as
long as your guest OSmakes sure to correctly flush disk cacheswhere needed. If
your guest OS does not handle volatile disk write caches correctly and your host
crashes or loses power, then the guest may experience data corruption.

² QEMU User Docs: -drive options - http://qemu.weilnetz.de/qemu-doc.html#sec_
005finvocation

³ https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_
Linux/6/html/Virtualization_Tuning_and_Optimization_Guide/chap-Virtualization_
Tuning_Optimization_Guide-BlockIO.html

http://qemu.weilnetz.de/qemu-doc.html#sec_005finvocation
http://qemu.weilnetz.de/qemu-doc.html#sec_005finvocation
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Tuning_and_Optimization_Guide/chap-Virtualization_Tuning_Optimization_Guide-BlockIO.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Tuning_and_Optimization_Guide/chap-Virtualization_Tuning_Optimization_Guide-BlockIO.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Tuning_and_Optimization_Guide/chap-Virtualization_Tuning_Optimization_Guide-BlockIO.html

The Linux Sysadmins Guide to Virtual Disks 57 / 75

If your guest is ineligible for the “none”mode, because it doesn’tmanage its diskwrite cache
well, then write-back mode is a great secondary option.

6.1.2 Write-through Caching

Write-through caching means that modified data is written synchronously into both system
cache, as well as a backing store (RAM/disk drive). Because the writing happens in the back-
ing store as well, write-through cache introduces a performance hit.

Because write-through caching puts a larger load on the host it is best used in moderation.
You should avoid enabling write-through caching on a host withmany guests, as this config-
uration is prone to scaling issues. You should only consider enabling write-through caching
in situations where data integrity is paramount above all else or where write-back caching is
not available on the guest.

6.2 I/O Schedulers

Scheduling algorithms, sometimes referred to as elevators⁴, aremethodsusedby theoperat-
ing systemtodecide theorder inwhichblock I/Ooperations (read/write) takeplace. Different
algorithms exist because no single one is best suited for all workloads.

A database server would want to prioritize latency over throughput, thus making the dead-
line scheduler an ideal choice, whereas in an interactive desktop you would favor the CFQ
(“completely fair queueing”) scheduler. Workload isn’t the only parameter to consider when
selecting a scheduler. The properties of the backing storage device also play an important
role (SSD or spinning disk?). In a virtualized environment the choice of scheduler becomes
evenmore involved because youmaywish to consider the scheduler used by the hypervisor
as well.

As you can see, the topic of selecting theproper I/O scheduler is neither short, nor is it simple.
That being said, in this chapter I’ll attempt toprovide youwith sufficient information tomake
an informed decision as well as several resources which discuss I/O schedulers in greater
detail. Together we’ll review the scheduler options available, the procedure for setting one
permanently, and typical use cases.

This chapter is incomplete. Please come back for updates.

⁴ TODO: Explain why

6.2.1 Additional Resources

White papers:

• Does VirtualizationMake Disk Scheduling Passé? -http://www-users.cs.umn.edu/
~chandra/papers/hotstorage09/paper.pdf

• On Disk I/O Scheduling in Virtual Machines - http://sysrun.haifa.il.ibm.com/
hrl/wiov2010/papers/kesavan.pdf

• Understanding the Effects of Hypervisor I/O Scheduling for Virtual Machine Performance In-
terference -http://www.seas.gwu.edu/~howie/publications/CloudCom12.
pdf

• I/O Scheduling for SAN and Virtualization - http://www.monperrus.net/martin/
IO+scheduling+for+san+and+virtualization

Performance tests:

• CephBobtailPerformance– IOSchedulerComparison -http://ceph.com/community/
ceph-bobtail-performance-io-scheduler-comparison/

• I/O Scheduler Comparison On The Linux 3.4 Desktop - http://www.phoronix.com/
scan.php?page=article&item=linux_iosched_2012&num=1

http://www-users.cs.umn.edu/~chandra/papers/hotstorage09/paper.pdf
http://www-users.cs.umn.edu/~chandra/papers/hotstorage09/paper.pdf
http://sysrun.haifa.il.ibm.com/hrl/wiov2010/papers/kesavan.pdf
http://sysrun.haifa.il.ibm.com/hrl/wiov2010/papers/kesavan.pdf
http://www.seas.gwu.edu/~howie/publications/CloudCom12.pdf
http://www.seas.gwu.edu/~howie/publications/CloudCom12.pdf
http://www.monperrus.net/martin/IO+scheduling+for+san+and+virtualization
http://www.monperrus.net/martin/IO+scheduling+for+san+and+virtualization
http://ceph.com/community/ceph-bobtail-performance-io-scheduler-comparison/
http://ceph.com/community/ceph-bobtail-performance-io-scheduler-comparison/
http://www.phoronix.com/scan.php?page=article&item=linux_iosched_2012&num=1
http://www.phoronix.com/scan.php?page=article&item=linux_iosched_2012&num=1

The Linux Sysadmins Guide to Virtual Disks 59 / 75

Chapter 7

Troubleshooting/FAQs

Q: Why are my cloned disks so big, I thought QCOWs would be smaller if my disk was mostly
empty ‽ ¹

A: Creating adisk image fromadevice copiesallblocks from the sourcedevice. This includes
data which has been deleted on the filesystem. When you delete a file from the filesystem
the operating system will not signal to the disk that it should mark the formerly occupied
blocks as free ² . The additional overhead associatedwith the operationwould hurt disk per-
formance. What option do you have available if you want tominimize the size of the created
disk image? You have two options, a free utility called zerofree ³ , and virt-sparsify. I refer
you to Section 4.1.5, “virt-sparsify” [47] for more information on virt-sparsify.

Q:Why do I get a device busy error message when unmounting $THING?

A: A process is accessing files on the mounted volume. Possible fixes:

• Sometimes the solution is a simple as lazily unmounting the device. Do this by giving the
-l option to umount.

• Make sure you don’t have any open shells whose present working directory is in the path
you’re trying to unmount.

¹ This character “‽” is called the interrobang. I just blew your mind.
² This is what allows data recovery software to work
³ zerofree homepage: http://intgat.tigress.co.uk/rmy/uml/sparsify.html

http://intgat.tigress.co.uk/rmy/uml/sparsify.html

• If that doesn’t work you can try using the fuser command to find what processes are ac-
cessing the device. For example: fuser /mnt/thumbdrive. This command also ac-
cepts an optional -k option, which will try to kill all processes accessing the busy path.

• If none of thatworks you can try the lsof command (superuser permissions required to see
everything being accessed). For example: lsof | grep /mnt/path.

The Linux Sysadmins Guide to Virtual Disks 61 / 75

Chapter 8

Glossary

AES encryption
Advanced Encryption Standard - very fast and secure; the de facto standard for sym-
metric encryption. See Also ”zlib compression”.

ASCII
American Standard Code for Information Interchange. It is a 7-bit code. ASCII encodes
characters as you would enter them into a computer (like this book)

Backing image
A (typically) read-only disk image which can be used as a starting point for new read-
write images. See Also ”Snapshot”.

Base-image
Placeholder. See Also ”Backing image”, ”Snapshot”.

block

block special

Caret notation

cat
A utility programwhich concatenates files and print them the standard output.

Control character

cylinder

dd
A utility program which can copy files, converting and formatting them according to
the options given by the user.

Devicemap
Software which creates devices from partition tables which you can interact with. See
Also ”Partition table”, ”kpartx”, ”GParted”, ”Partition”.

dev null

dev zero

fdisk
A utility program which manipulates disk partition tables. See Also ”Partition”, ”Parti-
tion table”.

file
A utility programwhich is used to determine file types

Filesystem

fuse

GParted
A graphical application used formanipulating (creating, resizing,moving, copying) the
filesystems of partitions.

Guest OS
Anoperating systemwhich is installed and ran on emulatd, virtual, or paravirtual hard-
ware which is managed by hypervisor software on the Host OS. See Also ”Hypervisor”,
”Host OS”.

head

Host OS
The running system (server, OS) which provides resources and facilities for running
several virtual Guest Operating Systems. See Also ”Guest OS”.

The Linux Sysadmins Guide to Virtual Disks 63 / 75

Hypervisor
Software blabla.

IDE

Image
A file which virtualization software can use as a hard disk, similar to a snapshot. See
Also ”Snapshot”.

kpartx
Reads partition tables on a specified device and create devicemaps over partition seg-
ments detected. See Also ”Partition”.

Lookback device

Loop device

losetup
A utility programwhich sets up and controls loop devices. See Also ”Loop device”, ””.

ls
A command which lists directory contents and file attributes.

LVM

MBR
TheMaster Boot Record holds the informationonhow the logical partitions, containing
file systems, are organized on a storage device. See Also ”Partition”, ”Partition table”.

meta-data
Data which describes other data; e.g., virtual disk configuration parameters.

mount
A utility program which attaches a filesystem to a directory tree. See Also ”umount”,
”Filesystem”.

NUL

offset

OS
Short for Operating System.

parted
Utility programwhich manipulates storage partitions See Also ”fdisk”.

Partition
In storage devices, the definition of storage allocation on a device; the capacity of that
region is less than or equal to that of the backing storage device; multiple partitions
may exist.

Partition table
Meta-data stored on a storage volume which describes the partition layout, i.e., be-
gin/end locations, types, andotherproperties. SeeAlso”Devicemap”, ”kpartx”, ”GParted”,
”Partition”, ”meta-data”.

QCOW2
QEMY Copy On Write image format (version 2); improves v1 with few features: snap-
shots, performance tuning options.

QCOW
QEMU Copy OnWrite image format (version 1); supports sparse files, backing files, and
encryption.

qemu-img
Virtual disk manipulation tool bundled with the QEMU (Quick Emulator) software col-
lection.

RAW
The simplest type of virtual disk format, as the file contains no extra meta-data about
itself, often usable without requiring special software. See Also ”QCOW”, ”QCOW2”,
”meta-data”.

resize2fs
Utility programwhich can resize ext2, ext3, or ext4 file systems.

SATA

sector

Snapshot
An virtual disk feature representing amoment in time, not represented as adisk image.
See Also ”Backing image”, ”Base-image”.

The Linux Sysadmins Guide to Virtual Disks 65 / 75

socket

superuser

symlink

UNIX

umount
Utility program which detaches the file system(s) mentioned from the file hierarchy.
See Also ”mount”.

virsh

x86 boot sector

zlib compression
general-purpose, patent-free, lossless data compression library. SeeAlso ”AESencryp-
tion”.

Appendix A

Appendix: Man Pages

A.1 UNITS

units, kilo, kibi, mega, mebi, giga, gibi — decimal and binary prefixes

DESCRIPTION

Binary prefixes

Thebinaryprefixes resemble thedecimal ones, but haveanadditional ’i’ (and ”Ki” startswith
a capital ’K’). The names are formed by taking the first syllable of the names of the decimal
prefix with roughly the same size, followed by ”bi” for ”binary”.

See also: http://physics.nist.gov/cuu/Units/binary.html

Discussion

Before thesebinaryprefixeswere introduced, itwas fairly commontousek=1000andK=1024,
just like b=bit, B=byte. Unfortunately, the M is capital already, and cannot be capitalized to
indicate binary-ness.

http://physics.nist.gov/cuu/Units/binary.html

The Linux Sysadmins Guide to Virtual Disks 67 / 75

Prefix Name Value
Ki kibi 210 = 1024
Mi mebi 220 = 1048576
Gi gibi 230 = 1073741824
Ti tebi 240 = 1099511627776
Pi pebi 250 = 1125899906842624

Ei exbi 260 =
1152921504606846976

Table A.1: Binary Prefixes

At first that didn’tmatter toomuch, sincememorymodules anddisks came in sizes thatwere
powers of two, so everyone knew that in such contexts ”kilobyte” and ”megabyte” meant
1024 and 1048576 bytes, respectively. What originally was a sloppy use of the prefixes ”kilo”
and ”mega” started to become regarded as the ”real true meaning” when computers were
involved. But then disk technology changed, and disk sizes became arbitrary numbers. Af-
ter a period of uncertainty all disk manufacturers settled on the standard, namely k=1000,
M=1000k, G=1000M.

The situation wasmessy: in the 14k4modems, k=1000; in the 1.44MB diskettes, M=1024000;
etc. In 1998 the IEC approved the standard that defines the binary prefixes given above, en-
abling people to be precise and unambiguous.

Thus, today, MB = 1000000B and MiB = 1048576B.

In the free software world programs are slowly being changed to conform. When the Linux
kernel boots and says:

hda: 120064896 sectors (61473 MB) w/2048KiB Cache

the MB are megabytes and the KiB are kibibytes.

Appendix B

Appendix: Disk Drive History

Disk drives, and how they are accessed, is a broad subject which has changed greatly over
time. Some “facts” are actually just misconceptions which are taken as canon. This section
will attempt to sort the facts from fiction and give some sort of historical account of how the
software and hardware has changed over time.

B.1 Disk Drive Components

In the early days of computing, direct access storage devices (i.e., “hard disk drives”) were
much simpler. A simple device meant a less complex method for interaction was necessary.
Two standards define how communication with disk drives may happen: The IDE/ATA stan-
dard for communicating with disk drives, and the BIOS Int 13h standard (“disk services”) for
how operating systems can interact with disk drives via software interrupts ¹ ² .

A disk drive was originally composed of a few simple components:

• One called a head which is mounted on a swinging arm. The arm swings across a disk
platter tomove thehead to the sector requested for a readorwrite operation. Moreplatters
in a disk drive meanmore heads and arms.

¹ BIOS Enhanced Disk Drive Specification v3: http://www.t10.org/t13/technical/d98120r0.pdf
² PC Guide - Int 13h: http://www.pcguide.com/ref/hdd/bios/bios_Int13h.htm

http://www.t10.org/t13/technical/d98120r0.pdf
http://www.pcguide.com/ref/hdd/bios/bios_Int13h.htm

The Linux Sysadmins Guide to Virtual Disks 69 / 75

• An array ofmagnetized spinningdisks calledplatters. Because each side of a platter is used
to store data there must be two heads for each platter.

• For the purpose of addressing a specific location on a platter each platter is further broken
down into cylinders (or tracks), and sectors.

Figure B.1: Disk Drive Components

B.2 Access Modes

Addressing data blocks can be done inmultipleways. The olderways (CHS, ECHS) operate in
terms of physical disk properties (geometry). The second system for addressing blocks (LBA)
has been an option in almost every disk drive since 1996 ³.

Note
Later we’ll see the problems caused by the radically different and conflicting way
the ATA/Int 13h standards are defined.

B.2.1 CHS Addressing

In the beginning data on disk drives was addressed by describing the physical geometry of
the disk using a combination of its distance from the center of the disk (track), its rotation
around the disk (sector), and the read-write head which accesses its side of the platter. This
addressing system is called Cylinder-Head-Sector (CHS) ⁴ . This method of access was pro-
vided via a BIOS service commonly referred to as Int 13h. While this system was quite
straightforward, it provided no abstraction between the physical location of data and the
act of requesting data from the drive. To read/write data you simply called Int 13h and
specified the physical cylinder, head, and sector on the disk drive of what you were request-
ing. It began breaking down when drive capacities exceeded what the standards at the time
were capable of describing. You can think of this like running out of telephone numbers.

One way this was addressed was through the Int 13h Extensions. The original Int 13h sys-
tem used 24 bits for addressing data, the extensions bumped that number up to 64 bits. To
put that into perspective, the maximum addressable range of data went from 8.46 GB up to
9,400,000,000,000 GB ⁵ .

At the same time this was happening, technology was advancing to the point where it was
becoming logically impossible to represent the physical drive geometry to the BIOS in a way

³ Wikipedia.org - Logical Block Addressing: http://en.wikipedia.org/wiki/Logical_block_
addressing#Enhanced_BIOS

⁴ PC Guide - Cylinder-Head-Sector: http://www.pcguide.com/ref/hdd/geom/geom.htm
⁵ PC Guide: Int 13h Extensions http://www.pcguide.com/ref/hdd/bios/bios_Extensions.

htm

http://en.wikipedia.org/wiki/Logical_block_addressing#Enhanced_BIOS
http://en.wikipedia.org/wiki/Logical_block_addressing#Enhanced_BIOS
http://www.pcguide.com/ref/hdd/geom/geom.htm
http://www.pcguide.com/ref/hdd/bios/bios_Extensions.htm
http://www.pcguide.com/ref/hdd/bios/bios_Extensions.htm

The Linux Sysadmins Guide to Virtual Disks 71 / 75

compatible with the ATA/Int 13h systems ⁶ . To work around this, disk drives began re-
porting their Logical Geometry to the BIOS. In this way only the disk drive knows it’s actual
physical (CHS) geometry. Access requests from theBIOS are translated internally on the hard
disk controller into actual physical disk geometry. A disk’s logical geometry will have a num-
ber of sectors approximately equal to, but never more than, the physical number of sectors
on the disk. The reported logical geometry fits within the limits of the ATA standard, but not
necessarily (most often not) within the limits of the Int 13h standard.

B.2.2 LBA Addressing

Up to this point we’ve been discussing addressing modes based on the properties of the
physical disk drive. Now the discussion will transition to the modern Logical Block Address-
ing.

Another important thing that happened was the introduction of geometry translation at the
BIOS level. This is an addressingmode which the BIOS will enable that translates the logical
drive geometry ⁷ into CHS tuples compatible with the Int 13h system. This addressing
mode is often called Extended CHS, or Largemode ⁸ .

In LBA mode there is an abstraction between the operating system and the devices where
the data is stored. Using LBA the operating system accesses data by unique identifiers. Each
block is addressed by a simple identifier which increases sequentially. This system requires
that all involved components are LBA aware: the disk drive controller, the BIOS, and the op-
erating system.

Eventually disk drive capacities exceeded the maximum addressable range defined in orig-
inal ATA-1 standard. In 2002 the T13 group released the ATA-6 standard ⁹ which introduced
48b addressing. This increased the maximum addressable capacity to 128PiB.

⁶ Zoned Bit Recording (PC Guide: http://www.pcguide.com/ref/hdd/geom/tracks_ZBR.htm) is
an example of something logically impossible to represent with Int 13h

⁷ Recall: this “logical geometry” has already been translated once to fit ATA standards for the BIOS by the disk
controller

⁸ PC Guide: Extended CHS/Large Mode: http://www.pcguide.com/ref/hdd/bios/modesECHS-c.
html

⁹ INCITS 361-2002 (1410D): AT Attachment - 6 with Packet Interface (ATA/ATAPI - 6): http://www.t13.org/
documents/UploadedDocuments/project/d1410r3b-ATA-ATAPI-6.pdf

http://www.pcguide.com/ref/hdd/geom/tracks_ZBR.htm
http://www.pcguide.com/ref/hdd/bios/modesECHS-c.html
http://www.pcguide.com/ref/hdd/bios/modesECHS-c.html
http://www.t13.org/documents/UploadedDocuments/project/d1410r3b-ATA-ATAPI-6.pdf
http://www.t13.org/documents/UploadedDocuments/project/d1410r3b-ATA-ATAPI-6.pdf

B.3 The Master Boot Record

TheMaster Boot Record (MBR) is located in the first sector of the primary disk drive. TheMBR
may be up to 446B of code, and partition tables may be up to 64B of data. When you add in
another 2B to record a Boot Signature you have 512B, which up until recently happened to
be the typical size of one sector ¹⁰ ¹¹ . This first sector is referred to by a special name, the
boot sector.

Size (in bytes) Percent Purpose

440B 86% Bootable Code (such as
GRUB ¹²/LILO ¹³)

004B 0.8% Disk signature
002B 0.4% Nulls
064B 13% Partition Table
002B 0.4% MBR Signature

Table B.1: Master Boot Record Contents

In the old days a disk cylinder (or track) was typically 63 sectors. This would represent one
concentric ring of storage on a physical disk. Some people believe that early operating sys-
tems (notablyMS-DOS) enforced requirementswhichdictated that partitions begin on cylin-
der boundaries, or that the OS needed to begin and end on a cylinder boundary. Jonathan
de Boyne Pollard (JDBP) disputes that claim ¹⁴ , saying:

It is often believed that disc partitions have to be aligned to cylinder or track
boundaries. This is not in fact true and never really has been. There are align-
ment considerations for disc partitions, but they have nothing to do with cylin-
ders, and they aren’t mandatory. Operating systems will still work with mis-
aligned partitions, just more slowly for some (not all) disc unit models.

The idea that disc partitions have to aligned to cylinder boundaries is nonsense
on its face. Millions of people have had discs where the first primary partition

¹⁰ Seagate.com - Transition to Advanced Format 4K Sector Hard Drives: http://www.seagate.com/
tech-insights/advanced-format-4k-sector-hard-drives-master-ti/

¹¹ Pixel Beat - Details of GRUB on the PC: http://www.pixelbeat.org/docs/disk/
¹² The Grand Unified Boot Loader (GRUB): http://www.gnu.org/software/grub/
¹³ Linux Loader (LILO): http://lilo.alioth.debian.org/
¹⁴ The gen on disc partition alignment: http://homepage.ntlworld.com/jonathan.

deboynepollard/FGA/disc-partition-alignment.html

http://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/
http://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/
http://www.pixelbeat.org/docs/disk/
http://www.gnu.org/software/grub/
http://lilo.alioth.debian.org/
http://homepage.ntlworld.com/jonathan.deboynepollard/FGA/disc-partition-alignment.html
http://homepage.ntlworld.com/jonathan.deboynepollard/FGA/disc-partition-alignment.html

The Linux Sysadmins Guide to Virtual Disks 73 / 75

began on track zero, sector one, head one with no ill effect whatsoever on op-
erating systems from MS-DOS through Windows NT to OS/2. That was, after all,
the default that fdisk/Disk Manager on those operating systems used for almost
two decades. At best, the purported alignment requirement would have been a
track alignment, with all partitions starting at sector one (Sectors are numbered
from one, remember.) of any given track.

But this is not true, either. No version of any operating system has actually re-
quired this. EvenMS-DOSwas quite happy to have disc partitions starting at sec-
tors other than 1. The only things that have required this have been disc parti-
tioning utilities. There’s been a bit of circular logic about this. The disc partition-
ing utilities enforced the requirement because their authors thought that it was
a requirement, but people only thought that it was a requirement because fdisk
and the like enforced it. It waswhat the partitioning utility programs enforced—
so the logic went — so it must have been a restriction. In fact it never was, and
no operating system itself has any trouble with this.

—Jonathan de Boyne Pollard

Whatwe can take away fromJDBPhere is this: Operating systems, not evenMS-DOS, require
partition’s to begin (or end) on cylinder or track boundaries.

The very idea that partitions have such restrictions is a complete falsehood. A story passed
down from hacker generation to generation, accepted as canon and never questioned.

JDBP goes on to also discuss the 4KiB alignment rule:

There is a disc partition alignment rule that does reflect the actual hardware. It
is the rule that partitions be aligned to 4KiB boundaries. This rule only makes
sense for some hard disc models, however.

In someharddiscmodels, the internal sector sizehasbeen increased from0.5KiB
to4KiB. At the I/Ocommand level, as systemsoftwares access thedisc, the sector
size is still 0.5KiB, however. Such discs are known as “512 byte emulation” discs
[…]

What happens on such “512e” discs is that whenever the operating system or
the firmware reads a 0.5KiB sector, the disc unit itself is actually reading a whole
4KiB and handing the firmware/operating system the appropriate one-eighth;
andwhenever the firmware/operating systemwritesa0.5KiB sector, thediscunit
is actually reading a whole 4KiB sector, modifying one eighth, and writing the
whole 4KiB back again.

[…]

So it’s simply necessary to ensure that those eight 0.5KiB sectors are contiguous
and aligned to an actual 4KiB sector on the disc. The “natural” I/O boundaries
used by the operating systemmust align with the internal, hidden, 4KiB bound-
aries of the physical disc. The eight 0.5KiB sectors in the I/O commandmust not
span twoormore 4KiB physical sectors; butmust be exactly one 4KiB sector, and
in the right order within that sector.

What we should first observe from this second quote is that there is a rule regarding sector
alignment. But that rule has nothing to do with operating system requirements. Further-
more, this is only a rule andwe are not obligated to follow it. Failure to follow the rule simply
results in degraded I/O performance.

I recommend reading the entire page for a complete overview of these topics. JDBP does an
excellent job separating the fact from fiction and explains how you can achieve correct 4KiB
alignment, or realignment if you need to fix an existing system.

Note
Formore information on the “native” 4KiB disk drive topic I recommend reviewing
footnote ¹⁰.

The Linux Sysadmins Guide to Virtual Disks 75 / 75

Colophon

This book was created using free/open source software. All media within was created and
saved in formats unencumbered by patents.

The standard typeface used in this book is Source Sans Pro ¹⁵ , the monospaced sequences
useSourceCodePro. ¹⁶ Bothof thesebeautiful fonts familiesweredesignedbyPaulD.Hunt ¹⁷
at Adobe Systems Incorporated. Moreover, both of these families are available for use under
the Open Font License version 1.1 ¹⁸ .

This book was written in 100% lint-free DocBook 5 XML ¹⁹ .

Composition of this book took place entirely in Emacs (nXML/RNG mode if you’re curious),
on an assortment of Fedora Linux releases.

The single-page HTML version of this book²⁰ uses the Twitter Bootstrap ²¹ stylesheet.

ThisbookwasproducedusingaGNUMake→xsltproc→dblatex→xetex→xdvipdfmx toolchain.

¹⁵ Source Sans Pro Announcement (2012-08-02): http://blogs.adobe.com/typblography/2012/
08/source-sans-pro.html

¹⁶ Source Code Pro Announcement (2012-09-24): http://blogs.adobe.com/typblography/2012/
09/source-code-pro.html

¹⁷ Paul D. Hunt on Adobe.com: http://www.adobe.com/products/type/font-designers/
paul-hunt.html

¹⁸ SIL Open Font License: http://scripts.sil.org/OFL
¹⁹ DocBook 5: The Definitive Guide: http://www.docbook.org/tdg5/en/html/docbook.html
²⁰ Single-page HTML version of the Virtual Disk Guide: http://lnx.cx/docs/vdg/output/

Virtual-Disk-Operations.html
²¹ Twitter Bootstrap: http://getbootstrap.com/

http://blogs.adobe.com/typblography/2012/08/source-sans-pro.html
http://blogs.adobe.com/typblography/2012/08/source-sans-pro.html
http://blogs.adobe.com/typblography/2012/09/source-code-pro.html
http://blogs.adobe.com/typblography/2012/09/source-code-pro.html
http://www.adobe.com/products/type/font-designers/paul-hunt.html
http://www.adobe.com/products/type/font-designers/paul-hunt.html
http://scripts.sil.org/OFL
http://www.docbook.org/tdg5/en/html/docbook.html
http://lnx.cx/docs/vdg/output/Virtual-Disk-Operations.html
http://lnx.cx/docs/vdg/output/Virtual-Disk-Operations.html
http://getbootstrap.com/

	Introduction
	Introduction
	Typographical Conventions
	Units & Prefixes
	Getting Help/Feedback

	The Virtual Disk Cookbook
	Creating Simple Images
	Resizing Disk Images
	Resizing RAW Images
	Resizing QCOW2 Images

	Query an Image for Information
	Converting Between RAW and QCOW2
	Convert an Image from RAW to QCOW2
	Convert an Image from QCOW2 to RAW

	Creating Disks with Backing Images
	Comitting changes to a backing image
	Cloning a Physical Disk

	Disk Concepts
	Creating a 1GiB virtual disk from scratch
	 Background on the dd command
	 Running dd
	Examining the Created File
	Create a Partition Table

	Devices and Partitions
	Introduction
	Creating a Loop Device
	Examine the loop device
	Creating partitions
	Formatting Partitions
	Cleaning Up

	Helper Utilities
	libguestfs
	guestmount
	virt-filesystems
	virt-rescue
	virt-resize
	virt-sparsify

	virt manager

	Disk Formats
	RAW
	QCOW
	QCOW2
	Other Formats

	Performance Considerations
	I/O Caching
	Write-back Caching
	Write-through Caching

	I/O Schedulers
	Additional Resources

	Troubleshooting/FAQs
	Glossary
	Appendix: Man Pages
	UNITS

	Appendix: Disk Drive History
	Disk Drive Components
	Access Modes
	CHS Addressing
	LBA Addressing

	The Master Boot Record

	Colophon

